8,666 research outputs found

    Stabilized Nearest Neighbor Classifier and Its Statistical Properties

    Full text link
    The stability of statistical analysis is an important indicator for reproducibility, which is one main principle of scientific method. It entails that similar statistical conclusions can be reached based on independent samples from the same underlying population. In this paper, we introduce a general measure of classification instability (CIS) to quantify the sampling variability of the prediction made by a classification method. Interestingly, the asymptotic CIS of any weighted nearest neighbor classifier turns out to be proportional to the Euclidean norm of its weight vector. Based on this concise form, we propose a stabilized nearest neighbor (SNN) classifier, which distinguishes itself from other nearest neighbor classifiers, by taking the stability into consideration. In theory, we prove that SNN attains the minimax optimal convergence rate in risk, and a sharp convergence rate in CIS. The latter rate result is established for general plug-in classifiers under a low-noise condition. Extensive simulated and real examples demonstrate that SNN achieves a considerable improvement in CIS over existing nearest neighbor classifiers, with comparable classification accuracy. We implement the algorithm in a publicly available R package snn.Comment: 48 Pages, 11 Figures. To Appear in JASA--T&

    Radio-to-TeV Phase-resolved Emission from the Crab Pulsar: The Annular Gap Model

    Full text link
    In the framework of the three-dimensional (3D) annular gap model with reasonable parameters (the magnetic inclination angle \alpha = 45 deg and the view angle \zeta = 63 deg), we first use the latest hight energy data to self-consistently calculate radio, X-ray, gamma-ray and TeV (MAGIC and VERITAS) light curves, phase-averaged spectrum and phase-resolved spectra for the Crab pulsar. It is found that the acceleration electric field and potential in the annular gap and core gap are huge enough in the several tens of neutron star radii. The pulsed emission of radio, X-ray, gamma-ray and TeV are mainly generated from the emission of primary particles or secondary particles with different emission mechanisms in the nearly similar region of the annular gap located in the only one magnetic pole, which leads to the nearly "phase-aligned" multi-wavelength light curves. The emission of peak 1 (P1) and peak 2 (P2) is originated from the annular gap region near the null charge surface, while the emission of bridge is mainly originated from the core gap region. The phase-averaged spectrum and phase-resolved spectra of the Crab pulsar from soft X-ray to TeV band are produced by four components: synchrotron radiation from CR-induced and ICS-induced pairs dominates the X-ray band to soft gamma-ray band (100 eV to 10 MeV); curvature radiation and synchrotron radiation from the primary particles mainly contribute to gamma-ray band (10 MeV to \sim 20 GeV); ICS from the pairs significantly contributes to the TeV gamma-ray band (\sim 20 GeV to 400 GeV). The multi-wavelength pulsed emission from the Crab pulsar has been well modeled with the annular gap and core gap model. To distinguish our single magnetic pole model from two-pole models, the convincing values of the magnetic inclination angle and the viewing angle will play a key role.Comment: 12 pages, 7 figures, 3 tables; published in ApJ on March 12. Due to the character limitation, the abstract here has been adopted a shortened versio
    corecore